
Einar Holsbø, 261020

Opposing forces in big data
Big data need big model

Learning outcome:
expectation propagation

Rules of thumb

• More data supports richer models: Unconstrained estimation of p numbers
requires a sample size N such that you have Kp observations in the smallest
subgroup of your data. K=10 often cited, but known to be optimistic in real
life.

• More data needs richer models: big data is usually found data, so any
insights must come from a model that corrects for this. Also, variance in
estimation often decreases as 1/sqrt(N).

• More data prohibits richer models: Eg. inverting a matrix is O(N3).

• Suggestion for new big-o notation: 😮(N3)

Rules of thumb

• More data supports richer models: Unconstrained estimation of p numbers
requires a sample size N such that you have Kp observations in the smallest
subgroup of your data. K=10 often cited, but known to be optimistic in real
life.

• More data needs richer models: big data is usually found data, so any
insights must come from a model that corrects for this. Also, variance in
estimation often decreases as 1/sqrt(N).

• More data prohibits richer models: Eg. inverting a matrix is O(N3).

• Suggestion for new big-o notation: 😮(N3)

Rules of thumb

• More data supports richer models: Unconstrained estimation of p numbers
requires a sample size N such that you have Kp observations in the smallest
subgroup of your data. K=10 often cited, but known to be optimistic in real
life.

• More data needs richer models: big data is usually found data, so any
insights must come from a model that corrects for this. Also, variance in
estimation often decreases as 1/sqrt(N).

• More data prohibits richer models: Eg. inverting a matrix is 😮(N3).

The fundamental problem
of Big Data

The fundamental problem
of Big Data

The fundamental problem
of Big Data

The fundamental problem
of Big Data

Demand for model clearly

 outstripping supply

Motivation: prescription data

• Observational

• Big N

• Rare events

• Hierarchical

Motivation: prescription data

Rate of adverse events for chemical substances

probably similar within chemical subgroup

Journal of Machine Learning Research 21 (2020) 1-53 Submitted 12/18; Revised 11/19; Published 1/20

Expectation Propagation as a Way of Life: A Framework for
Bayesian Inference on Partitioned Data

Aki Vehtari aki.vehtari@aalto.fi

Department of Computer Science

Aalto University

00076 Aalto, Finland

Andrew Gelman gelman@stat.columbia.edu

Departments of Statistics and Political Science

Columbia University

New York, NY 10027, USA

Tuomas Sivula tuomas.sivula@aalto.fi

Pasi Jylänki pasi.jylanki@gmail.com

Dustin Tran dustinviettran@gmail.com

Swupnil Sahai swupnil@stat.columbia.edu

Paul Blomstedt paul.blomstedt@aalto.fi

John P. Cunningham jpc2181@columbia.edu

David Schiminovich ds@astro.columbia.edu

Christian P. Robert xian@ceremade.dauphine.fr

Editor: Manfred Opper

Abstract

A common divide-and-conquer approach for Bayesian computation with big data is to
partition the data, perform local inference for each piece separately, and combine the results
to obtain a global posterior approximation. While being conceptually and computationally
appealing, this method involves the problematic need to also split the prior for the local
inferences; these weakened priors may not provide enough regularization for each separate
computation, thus eliminating one of the key advantages of Bayesian methods. To resolve
this dilemma while still retaining the generalizability of the underlying local inference
method, we apply the idea of expectation propagation (EP) as a framework for distributed
Bayesian inference. The central idea is to iteratively update approximations to the local
likelihoods given the state of the other approximations and the prior.

The present paper has two roles: we review the steps that are needed to keep EP
algorithms numerically stable, and we suggest a general approach, inspired by EP, for
approaching data partitioning problems in a way that achieves the computational benefits
of parallelism while allowing each local update to make use of relevant information from the
other sites. In addition, we demonstrate how the method can be applied in a hierarchical
context to make use of partitioning of both data and parameters. The paper describes a
general algorithmic framework, rather than a specific algorithm, and presents an example
implementation for it.

c•2020 Aki Vehtari, Andrew Gelman, Tuomas Sivula, Pasi Jylänki, Dustin Tran, Swupnil Sahai, Paul Blomstedt,
John P. Cunningham, David Schiminovich, and Christian P. Robert.
License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at
http://jmlr.org/papers/v21/18-817.html.

AR TIF IC IAL INTE LLIG E NC E 241

Fus ion, Propagation, and S tructuring in
Be lie f Ne tworks *

J u d e a P e a rl
Cognitive S ys tems Laboratory, Computer S cience Department,
University o f California, Los Ange le s , CA 90024, U.S .A.

Re c o mme nde d by Patrick Haye s

ABS TR AC T
Be lie f ne tworks are directed acyclic graphs in which the nodes represent propos itions (or variables),
the arcs s ignify direct dependencies be twe e n the linke d propos itions , and the s trengths o f these
dependencies are quantified by conditional probabilities . A ne twork o f this s ort can be used to
represent the generic knowle dge o f a dom ain expert, and it turns into a com putational architecture if
the links are used not m e re ly fo r s toring factual knowle dge but also for directing and activating the
data flow in the com putations which m anipulate this knowle dge .

The firs t part o f the pape r deals with the tas k o f fus ing and propagating the im pacts o f ne w
inform ation through the ne tworks in s uch a way that, whe n equilibrium is reached, each propos ition
will be ass igned a m e as ure o f be lie f cons is tent with the axiom s o f probability theory. It is s hown that
if the ne twork is s ingly conne cte d (e .g. tree-s tructured), then probabilities can be updated by local
propagation in an is om orphic ne twork o f paralle l and autonom ous processors and that the im pact o f
ne w inform ation can be im parte d to all propos itions in tim e proportional to the longes t path in the
ne twork.

The s e cond part o f the pape r deals with the proble m o f finding a tree-s tructured representation fo r
a collection o f probabilis tically couple d propos itions us ing auxiliary (dum m y) variables , colloquially
called "hidde n caus e s ." It is s hown that if s uch a tree-s tructured representation exis ts , then it is
pos s ible to unique ly uncove r the topology o f the tre e by observing pairwis e dependencies am ong the
available propos itions (i.e ., the leaves o f the tree). The entire tree s tructure , including the s trengths o f
all internal re lationships , can be recons tructed in tim e proportional to n log n, whe re n is the num be r
o f leaves .

1. Introduction

This s tudy was motivate d by atte mpts to de vis e a computational mode l for
humans ' infe re ntial re as oning, name ly, the me chanis m by which pe ople inte -
grate data from multiple s ource s and ge ne rate a cohe re nt inte rpre tation o f that
data. S ince the knowle dge from which infe re nce s are drawn is mos tly judg-

* This wo rk wa s s uppo rte d in pa rt by the Na tiona l S cie nce Founda tion , G ra n t# DS R 83-13875.
Artificial Inte lligence 29 (1986) 241-288

0004-3702/86/$3 .50 (~) 1986, E ls e vie r S cie nce P ublis he rs B.V. (No rth -Ho lla n d)

• Expectation Propagation algorithm
fairly old, presented in Thomas
Minka’s PhD dissertation in 2001

• The target computation (details to
follow) can be seen as sending
messages along a graph.

• Idea traces at least back to Judea
Pearl in 1986

AR TIF IC IAL INTE LLIG E NC E 241

Fus ion, Propagation, and S tructuring in
Be lie f Ne tworks *

J u d e a P e a rl
Cognitive S ys tems Laboratory, Computer S cience Department,
University o f California, Los Ange le s , CA 90024, U.S .A.

Re c o mme nde d by Patrick Haye s

ABS TR AC T
Be lie f ne tworks are directed acyclic graphs in which the nodes represent propos itions (or variables),
the arcs s ignify direct dependencies be twe e n the linke d propos itions , and the s trengths o f these
dependencies are quantified by conditional probabilities . A ne twork o f this s ort can be used to
represent the generic knowle dge o f a dom ain expert, and it turns into a com putational architecture if
the links are used not m e re ly fo r s toring factual knowle dge but also for directing and activating the
data flow in the com putations which m anipulate this knowle dge .

The firs t part o f the pape r deals with the tas k o f fus ing and propagating the im pacts o f ne w
inform ation through the ne tworks in s uch a way that, whe n equilibrium is reached, each propos ition
will be ass igned a m e as ure o f be lie f cons is tent with the axiom s o f probability theory. It is s hown that
if the ne twork is s ingly conne cte d (e .g. tree-s tructured), then probabilities can be updated by local
propagation in an is om orphic ne twork o f paralle l and autonom ous processors and that the im pact o f
ne w inform ation can be im parte d to all propos itions in tim e proportional to the longes t path in the
ne twork.

The s e cond part o f the pape r deals with the proble m o f finding a tree-s tructured representation fo r
a collection o f probabilis tically couple d propos itions us ing auxiliary (dum m y) variables , colloquially
called "hidde n caus e s ." It is s hown that if s uch a tree-s tructured representation exis ts , then it is
pos s ible to unique ly uncove r the topology o f the tre e by observing pairwis e dependencies am ong the
available propos itions (i.e ., the leaves o f the tree). The entire tree s tructure , including the s trengths o f
all internal re lationships , can be recons tructed in tim e proportional to n log n, whe re n is the num be r
o f leaves .

1. Introduction

This s tudy was motivate d by atte mpts to de vis e a computational mode l for
humans ' infe re ntial re as oning, name ly, the me chanis m by which pe ople inte -
grate data from multiple s ource s and ge ne rate a cohe re nt inte rpre tation o f that
data. S ince the knowle dge from which infe re nce s are drawn is mos tly judg-

* This wo rk wa s s uppo rte d in pa rt by the Na tiona l S cie nce Founda tion , G ra n t# DS R 83-13875.
Artificial Inte lligence 29 (1986) 241-288

0004-3702/86/$3 .50 (~) 1986, E ls e vie r S cie nce P ublis he rs B.V. (No rth -Ho lla n d)

• Expectation Propagation algorithm
fairly old, presented in Thomas
Minka’s PhD dissertation in 2001

• The target computation (details to
follow) can be seen as sending
messages along a factor graph

• Idea traces at least back to Judea
Pearl in 1986

AR TIF IC IAL INTE LLIG E NC E 241

Fus ion, Propagation, and S tructuring in
Be lie f Ne tworks *

J u d e a P e a rl
Cognitive S ys tems Laboratory, Computer S cience Department,
University o f California, Los Ange le s , CA 90024, U.S .A.

Re c o mme nde d by Patrick Haye s

ABS TR AC T
Be lie f ne tworks are directed acyclic graphs in which the nodes represent propos itions (or variables),
the arcs s ignify direct dependencies be twe e n the linke d propos itions , and the s trengths o f these
dependencies are quantified by conditional probabilities . A ne twork o f this s ort can be used to
represent the generic knowle dge o f a dom ain expert, and it turns into a com putational architecture if
the links are used not m e re ly fo r s toring factual knowle dge but also for directing and activating the
data flow in the com putations which m anipulate this knowle dge .

The firs t part o f the pape r deals with the tas k o f fus ing and propagating the im pacts o f ne w
inform ation through the ne tworks in s uch a way that, whe n equilibrium is reached, each propos ition
will be ass igned a m e as ure o f be lie f cons is tent with the axiom s o f probability theory. It is s hown that
if the ne twork is s ingly conne cte d (e .g. tree-s tructured), then probabilities can be updated by local
propagation in an is om orphic ne twork o f paralle l and autonom ous processors and that the im pact o f
ne w inform ation can be im parte d to all propos itions in tim e proportional to the longes t path in the
ne twork.

The s e cond part o f the pape r deals with the proble m o f finding a tree-s tructured representation fo r
a collection o f probabilis tically couple d propos itions us ing auxiliary (dum m y) variables , colloquially
called "hidde n caus e s ." It is s hown that if s uch a tree-s tructured representation exis ts , then it is
pos s ible to unique ly uncove r the topology o f the tre e by observing pairwis e dependencies am ong the
available propos itions (i.e ., the leaves o f the tree). The entire tree s tructure , including the s trengths o f
all internal re lationships , can be recons tructed in tim e proportional to n log n, whe re n is the num be r
o f leaves .

1. Introduction

This s tudy was motivate d by atte mpts to de vis e a computational mode l for
humans ' infe re ntial re as oning, name ly, the me chanis m by which pe ople inte -
grate data from multiple s ource s and ge ne rate a cohe re nt inte rpre tation o f that
data. S ince the knowle dge from which infe re nce s are drawn is mos tly judg-

* This wo rk wa s s uppo rte d in pa rt by the Na tiona l S cie nce Founda tion , G ra n t# DS R 83-13875.
Artificial Inte lligence 29 (1986) 241-288

0004-3702/86/$3 .50 (~) 1986, E ls e vie r S cie nce P ublis he rs B.V. (No rth -Ho lla n d)

• Expectation Propagation algorithm
fairly old, presented in Thomas
Minka’s PhD dissertation in 2001

• The target computation (details to
follow) can be seen as sending
messages along a factor graph

• Message passing idea traces back to
Judea Pearl in 1986

Factor graphs

Factor graphs

Factor graphs

Factor graphs

Factor graphs

Factor graphs

Factor graphs

Factorization not unique

Factorization not unique

Factorization not unique

Partitioning along data

perhaps particularly simple

(always possible with the

usual iid assumptions)

Factorization not unique

Partitioning along data

perhaps particularly simple

(always possible with the

usual iid assumptions)

Factorization not unique

Partitioning along data

perhaps particularly simple

(always possible with the

usual iid assumptions)

Factorization not unique

Partitioning along data

perhaps particularly simple

(always possible with the

usual iid assumptions)

Top-down computational view:
nice because we get so split up our Big Data

Factorization not unique

Partitioning along data

perhaps particularly simple

(always possible with the

usual iid assumptions)

Top-down computational view:
nice because we get so split up our Big Data

Bottom-up security view:
nice because we don’t need to share our Secret Data

Goal: approximate full function by
approximating at the “sites” fi passing θ

values along edges in the graph iteratively

Must iterate until convergence;
convergence not guaranteed

The current g is needed at all sites
Makes for a simple distributed architecture

Vehtari et al.

Figure 1: The EP framework for partitioned data. The central node stores the current
parameters for the global approximation g(◊). Each site node k = 1, 2, . . . , K

stores the current parameters for the site approximation gk(◊) and the assigned
partition of the data yk. The central node sends the parameters of g(◊) to the
site nodes. In parallel, the site nodes update gk(◊) and send back the di�erence in
the parameters.

conveniently inferred by estimating the tilted distribution moments, for example using
MCMC. Other message passing algorithms, where some other method for tilted distribution
approximation is used, can also be applied in such a context. These are discussed in more
detail in Section 5.1.

In divide-and-conquer algorithms, each partition of the data is processed separately and
the results are combined together in a single pass. This behavior resembles the first iteration
of the EP algorithm. In EP however, the global approximation is further optimized by
iteratively updating the sites with shared information from the other sites. In contrast to
divide-and-conquer algorithms, each step of an EP algorithm combines the likelihood of one
partition with the cavity distribution representing the rest of the available information across
the other K ≠1 pieces (and the prior). This extra information can be used to concentrate the
computational power economically in the areas of interest. Figure 2 illustrates this advantage
with a conceptual example, showing how the inference for each site factor fk(◊) can be
concentrated in a region where all site factors overlap. Figure 3 illustrates the construction
of the tilted distribution g\k(◊) and demonstrates the critically important regularization
attained by using the cavity distribution g≠k(◊) as a prior; because the cavity distribution
carries information about the posterior inference from all other K ≠ 1 data pieces, any
computation done to approximate the tilted distribution (step 2b in the message passing
algorithm) will focus on areas of greater posterior mass.

4. Application to Hierarchical Models

In a hierarchical context, EP can be used to e�ciently divide a multiparameter problem
into sub-problems with fewer parameters. If the data assigned to one site are not a�ected
by some parameter, the site does not need to take this local parameter into account in the
update process. By distributing hierarchical groups into separate sites, the sites can ignore
the local parameters from the other groups.

8

The current g is needed at all sites
Makes for a simple distributed architecture

Vehtari et al.

Figure 1: The EP framework for partitioned data. The central node stores the current
parameters for the global approximation g(◊). Each site node k = 1, 2, . . . , K

stores the current parameters for the site approximation gk(◊) and the assigned
partition of the data yk. The central node sends the parameters of g(◊) to the
site nodes. In parallel, the site nodes update gk(◊) and send back the di�erence in
the parameters.

conveniently inferred by estimating the tilted distribution moments, for example using
MCMC. Other message passing algorithms, where some other method for tilted distribution
approximation is used, can also be applied in such a context. These are discussed in more
detail in Section 5.1.

In divide-and-conquer algorithms, each partition of the data is processed separately and
the results are combined together in a single pass. This behavior resembles the first iteration
of the EP algorithm. In EP however, the global approximation is further optimized by
iteratively updating the sites with shared information from the other sites. In contrast to
divide-and-conquer algorithms, each step of an EP algorithm combines the likelihood of one
partition with the cavity distribution representing the rest of the available information across
the other K ≠1 pieces (and the prior). This extra information can be used to concentrate the
computational power economically in the areas of interest. Figure 2 illustrates this advantage
with a conceptual example, showing how the inference for each site factor fk(◊) can be
concentrated in a region where all site factors overlap. Figure 3 illustrates the construction
of the tilted distribution g\k(◊) and demonstrates the critically important regularization
attained by using the cavity distribution g≠k(◊) as a prior; because the cavity distribution
carries information about the posterior inference from all other K ≠ 1 data pieces, any
computation done to approximate the tilted distribution (step 2b in the message passing
algorithm) will focus on areas of greater posterior mass.

4. Application to Hierarchical Models

In a hierarchical context, EP can be used to e�ciently divide a multiparameter problem
into sub-problems with fewer parameters. If the data assigned to one site are not a�ected
by some parameter, the site does not need to take this local parameter into account in the
update process. By distributing hierarchical groups into separate sites, the sites can ignore
the local parameters from the other groups.

8

This paper is included in the Proceedings of the
11th USENIX Symposium on

Operating Systems Design and Implementation.
October 6–8, 2014 • Broomfield, CO

978-1-931971-16-4

Open access to the Proceedings of the
11th USENIX Symposium on Operating Systems

Design and Implementation
is sponsored by USENIX.

Scaling Distributed Machine Learning
with the Parameter Server

Mu Li, Carnegie Mellon University and Baidu; David G. Andersen and Jun Woo Park,
Carnegie Mellon University; Alexander J. Smola, Carnegie Mellon University and Google, Inc.;
Amr Ahmed, Vanja Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su, Google, Inc.

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu

The current g is needed at all sites
Makes for a simple distributed architecture

Vehtari et al.

Figure 1: The EP framework for partitioned data. The central node stores the current
parameters for the global approximation g(◊). Each site node k = 1, 2, . . . , K

stores the current parameters for the site approximation gk(◊) and the assigned
partition of the data yk. The central node sends the parameters of g(◊) to the
site nodes. In parallel, the site nodes update gk(◊) and send back the di�erence in
the parameters.

conveniently inferred by estimating the tilted distribution moments, for example using
MCMC. Other message passing algorithms, where some other method for tilted distribution
approximation is used, can also be applied in such a context. These are discussed in more
detail in Section 5.1.

In divide-and-conquer algorithms, each partition of the data is processed separately and
the results are combined together in a single pass. This behavior resembles the first iteration
of the EP algorithm. In EP however, the global approximation is further optimized by
iteratively updating the sites with shared information from the other sites. In contrast to
divide-and-conquer algorithms, each step of an EP algorithm combines the likelihood of one
partition with the cavity distribution representing the rest of the available information across
the other K ≠1 pieces (and the prior). This extra information can be used to concentrate the
computational power economically in the areas of interest. Figure 2 illustrates this advantage
with a conceptual example, showing how the inference for each site factor fk(◊) can be
concentrated in a region where all site factors overlap. Figure 3 illustrates the construction
of the tilted distribution g\k(◊) and demonstrates the critically important regularization
attained by using the cavity distribution g≠k(◊) as a prior; because the cavity distribution
carries information about the posterior inference from all other K ≠ 1 data pieces, any
computation done to approximate the tilted distribution (step 2b in the message passing
algorithm) will focus on areas of greater posterior mass.

4. Application to Hierarchical Models

In a hierarchical context, EP can be used to e�ciently divide a multiparameter problem
into sub-problems with fewer parameters. If the data assigned to one site are not a�ected
by some parameter, the site does not need to take this local parameter into account in the
update process. By distributing hierarchical groups into separate sites, the sites can ignore
the local parameters from the other groups.

8

This paper is included in the Proceedings of the
11th USENIX Symposium on

Operating Systems Design and Implementation.
October 6–8, 2014 • Broomfield, CO

978-1-931971-16-4

Scaling Distributed Machine Learning
with the Parameter Server

Mu Li, Carnegie Mellon University and Baidu; David G. Andersen and Jun Woo Park,
Carnegie Mellon University; Alexander J. Smola, Carnegie Mellon University and Google, Inc.;
Amr Ahmed, Vanja Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su, Google, Inc.

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu

588 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

server groupserver
managerresource

manager

task
scheduler

a worker
node

training data

a server
node

worker group

Figure 4: Architecture of a parameter server communicat-
ing with several groups of workers.

the same effect as in the previous section: we can process
much bigger models than a single worker may hold.

3 Architecture
An instance of the parameter server can run more than
one algorithm simultaneously. Parameter server nodes are
grouped into a server group and several worker groups
as shown in Figure 4. A server node in the server group
maintains a partition of the globally shared parameters.
Server nodes communicate with each other to replicate
and/or to migrate parameters for reliability and scaling. A
server manager node maintains a consistent view of the
metadata of the servers, such as node liveness and the as-
signment of parameter partitions.

Each worker group runs an application. A worker typ-
ically stores locally a portion of the training data to com-
pute local statistics such as gradients. Workers communi-
cate only with the server nodes (not among themselves),
updating and retrieving the shared parameters. There is a
scheduler node for each worker group. It assigns tasks to
workers and monitors their progress. If workers are added
or removed, it reschedules unfinished tasks.

The parameter server supports independent parameter
namespaces. This allows a worker group to isolate its set
of shared parameters from others. Several worker groups
may also share the same namespace: we may use more
than one worker group to solve the same deep learning
application [13] to increase parallelization. Another ex-
ample is that of a model being actively queried by some

nodes, such as online services consuming this model. Si-
multaneously the model is updated by a different group of
worker nodes as new training data arrives.

The parameter server is designed to simplify devel-
oping distributed machine learning applications such as
those discussed in Section 2. The shared parameters are
presented as (key,value) vectors to facilitate linear algebra
operations (Sec. 3.1). They are distributed across a group
of server nodes (Sec. 4.3). Any node can both push out its
local parameters and pull parameters from remote nodes
(Sec. 3.2). By default, workloads, or tasks, are executed
by worker nodes; however, they can also be assigned to
server nodes via user defined functions (Sec. 3.3). Tasks
are asynchronous and run in parallel (Sec. 3.4). The pa-
rameter server provides the algorithm designer with flexi-
bility in choosing a consistency model via the task depen-
dency graph (Sec. 3.5) and predicates to communicate a
subset of parameters (Sec. 3.6).

3.1 (Key,Value) Vectors

The model shared among nodes can be represented as a set
of (key, value) pairs. For example, in a loss minimization
problem, the pair is a feature ID and its weight. For LDA,
the pair is a combination of the word ID and topic ID, and
a count. Each entry of the model can be read and written
locally or remotely by its key. This (key,value) abstraction
is widely adopted by existing approaches [37, 29, 12].

Our parameter server improves upon this basic ap-
proach by acknowledging the underlying meaning of
these key value items: machine learning algorithms typ-
ically treat the model as a linear algebra object. For in-
stance, w is used as a vector for both the objective function
(1) and the optimization in Algorithm 1 by risk minimiza-
tion. By treating these objects as sparse linear algebra
objects, the parameter server can provide the same func-
tionality as the (key,value) abstraction, but admits impor-
tant optimized operations such as vector addition w + u,
multiplication Xw, finding the 2-norm ‖w‖2, and other
more sophisticated operations [16].

To support these optimizations, we assume that the
keys are ordered. This lets us treat the parameters as
(key,value) pairs while endowing them with vector and
matrix semantics, where non-existing keys are associated
with zeros. This helps with linear algebra in machine
learning. It reduces the programming effort to implement
optimization algorithms. Beyond convenience, this inter-
face design leads to efficient code by leveraging CPU-
efficient multithreaded self-tuning linear algebra libraries
such as BLAS [16], LAPACK [3], and ATLAS [49].

6

Tradeoffs and considerations

• Data partitioning: More sites = more parallelism, but worse approximations

• Exact form of g: need not be Gaussian, often is

• Initial estimates influence convergence

• How to estimate g/k (Vehtari &al. do MCMC, the original EP was closed-form)

• Asynchronous updates would be nice if some sites are small

• Damping of updates to global g? (analogous to step size in gradient descent)

• Potential numerical stability issues working with covariance matrices

Tradeoffs and
considerations
No free lunches!

